1. <sub id="zy88n"></sub>
        1. <blockquote id="zy88n"></blockquote>
          欧美黑人又大又粗xxxxx,人人爽久久久噜人人看,扒开双腿吃奶呻吟做受视频,中国少妇人妻xxxxx,2021国产在线视频,日韩福利片午夜免费观着,特黄aaaaaaa片免费视频,亚洲综合日韩av在线

          Earth's largest radio telescope to search for "new worlds" outside solar system

          Source: Xinhua| 2019-07-11 18:50:19|Editor: Yamei
          Video PlayerClose

          Aerial photo taken on Sept. 10, 2018 shows China's Five-hundred-meter Aperture Spherical Radio Telescope (FAST) in southwest China's Guizhou Province. (Xinhua/Ou Dongqu)

          by Xinhua writer Yu Fei

          BEIJING, July 11 (Xinhua) -- As well as hunting for signals from alien life, the largest and most sensitive radio telescope ever built will search for extra-solar planets, or exoplanets, which have magnetic fields like Earth, within 100 light-years from Earth.

          Astronomers from countries including China and France recently published their ambitious observation plan using the Five-hundred-meter Aperture Spherical Radio Telescope (FAST) in the academic journal Research in Astronomy and Astrophysics.

          Li Di, a researcher at the National Astronomical Observatories of the Chinese Academy of Sciences and chief scientist of FAST, said scientists are more concerned about habitable planets, which should have not only water, a suitable temperature and atmosphere, but also magnetic field.

          "The earth's magnetic field protects life from cosmic rays. There is a scientific bug in the sci-fi blockbuster 'The Wandering Earth,' that is, the earth stops rotating. If that happens, the magnetic field would disappear. Without the protection of the magnetic field, the earth's atmosphere would be blown off by the solar wind. As a result, humans and most living things would be exposed to the harsh cosmic environment and unable to survive," said Li.

          Philippe Zarka, an astronomer from the Paris Observatory, said planets are the most favorable cradle of life. As of today, about 4,000 exoplanets have been found.

          There are six magnetized planets in the solar system with a planetary-scale magnetic field: Mercury, Earth, Jupiter, Saturn, Uranus and Neptune.

          "In our solar system, magnetized planets are strong radio sources. Radio detection of exoplanets aims at the physical characterization of exoplanets and comparative studies with solar system planets," said Zarka.

          The first exoplanet was discovered near a pulsar by means of radio astronomy. But that is a very special case. Except for that, all the exoplanets found so far were discovered through optical astronomy or infrared imaging, according to Li.

          Those discoveries have led scientists to believe that almost all the stars in the Milky Way have planets resolving around them. And there must be plenty of habitable planets.

          "In our solar system, the high-energy charged particles in the solar wind and the electrons from some planets' moons would have interaction with the magnetosphere of planets, generating radio radiation," said Li.

          "All the planets with magnetic fields in our solar system can be found generating such radiation, which can be measured and studied by radio telescopes. But research on the planets' magnetic fields cannot be realized through optical and infrared astronomical observation.

          "Do the exoplanets have magnetic fields? If they have, they should also generate radio radiation under the influence of the wind of their parent stars," Li added.

          Astronomers have been looking for radio signals from exoplanets, but with no discovery yet.

          "We want to try with FAST, which is the world's most sensitive radio telescope. If we can for the first time detect the radio radiation of an exoplanet and confirm its magnetic field, it would be a very important discovery," said Li.

          "If this observation window is opened, we would be able to study the laws of the magnetic fields of exoplanets and whether they are habitable in another aspect," he said.

          Photo taken on June 27, 2016 shows FAST under the stars. (Xinhua/Liu Xu)

          Most exoplanets have been discovered by the U.S. Kepler space telescope. Those exoplanets are located away from Earth at a distance of more than 500 light-years.

          In 2018, NASA launched a new planet-hunting satellite, the Transiting Exoplanet Survey Satellite (TESS), to target exoplanets closer to Earth.

          "If TESS could find a large number of exoplanets, and we also track them, the possibility of discovering exoplanets with magnetic fields will increase," Li said.

          "We are looking for exoplanets within 100 light-years from Earth. Once such planets are found, it would be favorable for scientists to conduct a thorough study of them, and there is even possibility for interstellar migration."

          Located in a naturally deep and round karst depression in southwest China's Guizhou Province, FAST was completed in September 2016 and is due to start regular operations in September this year.

          The performance of the telescope during commissioning is beyond imagination, said Li.

          During testing and early operation, FAST started making astronomical discoveries, particularly of pulsars of various kinds, including millisecond pulsars, binaries and gamma-ray pulsars,

          A team of astronomers from more than 10 countries and regions are making observation plans for FAST, in order to best apply the unprecedented power of the telescope, going beyond what has been done by other telescopes in the past.

          They have proposed ambitious observation objectives through the telescope, such as gravitational waves, exoplanets, ultra-high energy cosmic rays and interstellar matter, to advance human knowledge of astronomy, astrophysics and fundamental physics.

          "Planning new observations to find new targets and new kinds of objects beyond the reach of existing facilities is one of the most exciting jobs of a professional astronomer," Li said.

          Scientists believe more discoveries that exceed expectations will be made with FAST.

          "When such a powerful new telescope begins its scientific observations, unexpected signals and effects often emerge," Li said.

          "As these observation projects will be launched over the next few years, FAST will have an impact on many areas of astronomy and astrophysics around the world. Although we cannot predict what it will discover, the telescope may profoundly change our understanding of the universe," Li added.

          KEY WORDS:
          EXPLORE XINHUANET
          010020070750000000000000011103261382183371
          主站蜘蛛池模板: 中文无遮挡h肉动漫在线观看| 欧美人与zoxxxx另类| 7777精品久久久大香线蕉| 亚洲精品国产综合久久一线| 精品日产卡一卡二卡国色天香| 久久国内偷拍综合视频| 无码国模国产在线观看免费| 欧美精品另类| 亚洲成人播放| 国产免费无遮挡吸乳视频在线观看| 国产精品高潮无码毛片| 极品人妻少妇一区二区三区| 影音先锋大黄瓜视频| 夜夜爽夜夜叫夜夜高潮漏水| 中文字幕在线日韩一区| 2021国产精品一区二区在线| 国产极品粉嫩泬免费观看| 欧美天天干| 深一点~我下面好爽视频| 四虎国产精品永久一区| 国产一区二区不卡在线| 国产精品免费看久久久无码| 国产av亚洲精品久久久久李知恩| 亚洲嫩模一区二区三区| 国产六月婷婷爱在线观看| 亚洲国产av一区二区三区丶| 国产综合精品一区二区三区| 亚洲av片在线免费观看| 欧美色香蕉| 无码h肉在线观看免费一区| 日韩国产亚洲一区二区在线观看| 亚洲αⅴ无码乱码在线观看性色| 99国产超薄丝袜足j在线播放| 国产精品理论片| 亚洲成aⅴ人在线观看| 国产成人一区二区三区别| 99精品福利视频| 狠狠热在线视频免费| 人人妻人人澡人人爽欧美二区| 亚洲第一区无码专区| 日韩中文字幕v亚洲中文字幕|