1. <sub id="zy88n"></sub>
        1. <blockquote id="zy88n"></blockquote>
          欧美黑人又大又粗xxxxx,人人爽久久久噜人人看,扒开双腿吃奶呻吟做受视频,中国少妇人妻xxxxx,2021国产在线视频,日韩福利片午夜免费观着,特黄aaaaaaa片免费视频,亚洲综合日韩av在线

          China Focus: Data-labeling: the human power behind Artificial Intelligence

          Source: Xinhua| 2019-01-17 20:42:21|Editor: ZX
          Video PlayerClose

          BEIJING, Jan. 17 (Xinhua) -- In a five-story building on the outskirts of Beijing, 22-year-old Zhang Yusen stares at a computer screen, carefully drawing boxes around cars in street photos.

          As artificial voices replace human customer services in call centers and robots replace workers on production lines, Zhang, a vocational school graduate, has found a steady job: data-labeling, a new industry laying the groundwork for the development of AI technologies.

          SUPERVISED LEARNING

          As the "artificial" part of AI, data labeling receives much less media attention than the "intelligence" part of computer algorithms.

          Facial recognition, self-driving, diagnosis of tumors by computer systems and the defeat of best human Go player by Alpha Go are ways AI technologies have amazed in recent years.

          However, for researchers, the current AI technologies are still quite limited and at an early stage.

          Professor Chen Xiaoping, director of Robotics Lab at the University of Science and Technology of China, said all AI technologies so far have come from "supervised" learning in which an AI system is trained with specific forms of data.

          Take training a machine to recognize dogs for instance: the system must be fed vast numbers of pictures labeled by humans to tell the system which pictures have dogs and which don't.

          Chen noted the human brain is excellent at processing unknown information with reasoning, but it is still impossible for AI. A kindergartener can make the guess of soccer ball from clues like "a black and white round object you can kick," but it's not a easy task for AI. An AI system might be able to tell all different kinds of dogs, but it cannot tell a stuffed animal is not real if such images are not sent to the system.

          Yann LeCun, AI scientist at Facebook and widely considered one of the "godfathers" of machine-learning, said recently, "Our best AI systems have less common sense than a house cat."

          Behind powerful AI algorithms are vast complicated dataset built and labeled by humans.

          ImageNet is one of the world's largest visual databases designed to train AI systems to see. According to its inventors, it took nearly 50,000 people in 167 countries and regions to clean, sort and label nearly a billion images over more than three years.

          QUALITY CHECKING

          For top researchers like Chen Xiaoping, the next AI breakthrough is expected in self-supervised or unsupervised learning in which AI systems learn without human labeling. But no one knows when it will happen.

          "I think in the next five to 10, maybe 15 years, AI systems will still rely on labeled data." said Du Lin, CEO and founder of data-labeling firm BasicFinder.

          Du published his first paper about computer vision when he was in high school. After graduating from college, his first windfall came from selling a startup data-digging firm for 4 million U.S. dollars.

          In 2014, Du and his partners noticed the rise of AI deep-learning and founded BasicFinder. The company is now a leading data-labeling company, with clients including Stanford University, the Chinese Academy of Sciences, China Mobile and Chinese AI startup SenseTime.

          At BasicFinder, a typical work flow starts with taggers like Zhang Yusen. After training two to three months, they draw boxes around cars and pedestrians in street photos, tag ancient German letters, or transcribe snatches of speech.

          The labeled images are submitted to quality inspectors who check 2,000 pictures a day. If one image is found inaccurately tagged in every 500 images in random checks, the company is not paid the original price. If the error rate exceeds 1 percent, clients can ask to change data-taggers.

          Du said the company has been optimizing work flow to ensure greater accuracy as well as to protect intellectual property and privacy.

          HUMAN IN LOOP

          A model that requires human interaction is called "human in the loop" and humans remain in the loop much longer than many have expected, said Du.

          Data-taggers now work on outsourcing platforms as far afield as Mexico, Kenya, India and Venezuela. Anyone can create an account to become a freelance data-tagger.

          But Du strongly disagrees that data-labeling companies, depicted in some media reports as "the dirty little secret" of AI, resemble Foxconn's infamous iPhone factories.

          He noted that due to the nature of AI deep-learning, it is the greater accuracy of labeled data that keeps a company alive and thriving, rather than low prices and cheap labor.

          China's Caijing magazine reported in October last year that about half of data-labeling companies in China's Henan Province went bust in 2018 as orders dried up.

          Du said that in the past two years, many found data-labeling a tough market. The first spurt of growth has ended and a lot of workshop-like companies have been knocked out.

          A full-time data-tagger at BasicFinder can earn 6,000 to 7,000 yuan a month, along with accommodation and social benefits. In the first three quarters of 2018, the disposable income per capita in Beijing was 46,426 yuan, around 5,158 yuan a month, according to local government statistics.

          Zhang Yusen and his girlfriend, who also works at BasicFinder as a quality inspector are so far enjoying their work.

          TOP STORIES
          EDITOR’S CHOICE
          MOST VIEWED
          EXPLORE XINHUANET
          010020070750000000000000011100001377521541
          主站蜘蛛池模板: 久久亚洲黄色视频| 久久99精品久久久久麻豆| 99久热re在线精品99 6热视频| 国内精品视频一区二区八戒| 日韩在线1| 国产普通话对白刺激| 久久99国产一区二区三区| yyy6080韩国三级理论| 日韩人妻ol丝袜av一二区| 疯狂做受xxxx高潮欧美日本| 色窝窝免费一区二区三区| 日韩黄片毛片在线观看| 一区二三国产好的精华液| 免费国产一级 片内射老| 欧美性xxxx禁忌| 亚洲最大色综合成人av| 大香网伊人久久综合网2018| 中文在线中文资源| 99久久精品一区二区国产| 芳草地社区在线视频| 国产中文三级全黄| 国产精品白丝av网站 | 国产真实交换多p免视频| 久青草精品视频在线观看 | 成在线人免费视频播放| 国产精品中文字幕av| 亚洲成A∧人片在线播放黑人| 四虎无码精品a∨在线观看| 亚洲av日韩综合一区尤物| 亚洲国产另类久久久精品黑人| 日本a级精品一区二区三区| 97视频精品全国在线观看| 国产免费好大好硬视频| 精品欧美日韩一区二区| japanese日本xxxxhd| 日本欧美视频在线观看三区| 少妇被粗大的猛烈进出视频| 中国特黄美女一级视频| 亚洲一区二区三区影院| 亚洲最大成人网色| 精品国产色情一区二区三区|